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Summary 

 

The application of data science and machine learning is transforming petroleum geoscience 

workflows. Routine, yet time-consuming and important tasks can be made more efficient by the 

application of machine learning-based assisted interpretation, freeing the geoscientist to carry out 

tasks with greater value. Accuracy, reproducibility, and understanding of uncertainty are also 

improved and greater insight can be gained. Biostratigraphic data is very common in the industry but 

requires deep specialised knowledge and significant time to interpret, hence it can be underutilized. 

However, the form of the data makes it suitable for the application of machine learning techniques. 

The applications of machine leaning have been tested on biostratigraphic data from a set of typical 

industry wells to facilitate the interpretation of biozone/age and paleoenvironment.  Application of 

Random Forest and Naïve Bayesian algorithms achieved results comparable to standard human 

interpretation, although pre-processing of the data (e.g. removal of spurious reworked or caved data) 

proved beneficial. Critical to the success of the project was the close working relationship between 

data scientists and subject matter experts in order to capture the nuances of biostratigraphic data and 

its interpretation. The work forms a case study for application to other geoscience data types.  
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Introduction 

 

Data science, and machine learning in particular, has the potential to revolutionize the practice of 

petroleum geoscience. Routine tasks such as the interpretation of lithology from wireline log data or 

the interpretation of faults within seismic datasets easily lend themselves to machine learning 

techniques enabling huge gains in efficiency. Tasks that previously took several hours/days can now 

be accomplished accurately in minutes/seconds, freeing the geoscientist to concentrate on interpretive 

tasks that are of higher value. Time saving is not the only gain to be made. Bond et al. (2007) have 

succinctly demonstrated uncertainty in geoscience interpretation and how a scientist is influenced by 

his specialised skills and experience. In contrast, machine learning applications can provide greater 

accuracy and capture the range of uncertainty with clear reproducibility. Most importantly of all, new 

insights may be generated that can add huge value in the exploration and production workflow.  

 

In order to test the application of machine learning to petroleum geoscience, data was utilized from 

one of the most abundant data types in the industry – well-based biostratigraphy. In most wells, 

cuttings and core samples are routinely analysed for microfossil content. Interpretation of this data 

provides information on age (by calibration of the biozones and bioevents recognised) and 

depositional environment that in turn contributes to subsurface correlation and petroleum systems 

element (reservoir, source, seal) mapping and modelling (Jones, 2011). The application of statistical 

techniques to palaeontological data is not new. The subject has long benefitted from statistical 

approaches to taxonomic classification and palaeoenvironmental or stratigraphic interpretation 

(Hammer & Harper, 2006). What is new is a specific machine learning approach enabled by recent 

advancements in computing power and the democratization of vast volumes of data and machine 

learning algorithms in open source software libraries.  

 

The interpretation of biostratigraphic data is a highly specialised skill. Different fossil groups (e.g. 

foraminifera, nannofossils, and palynomorphs) of different ages require deep subject matter expertise, 

often gleaned over many years of specialised study, in order to provide accurate and reliable 

interpretations. It can also be a very time consuming process. A single well with tens or hundreds of 

samples with a rich and diverse microfossil content, can take several days to interpret. This does not 

include the time to collect and identify the microfossils, which is another area where machine learning 

and automation can play a role (Gard et al., 2016).  

 

Because the interpretation of biostratigraphic data can be time consuming and requires specialised 

skills, there is a huge volume of underutilized data within the industry. Releasing value from this 

historical data alongside accelerating the interpretation of new data will be a significant boon to the 

industry. Furthermore, it can be considered a test case of how machine learning can be applied to an 

industry data type that is not dissimilar to other data types (e.g. geochemistry) where machine learning 

may release value.  

 

Biostratigraphy 

 

Many Phanerozoic sedimentary rocks, no matter if marine or non-marine, contain microfossils. The 

process of evolution means that particular species (or even higher taxonomic groups) of fossils are 

adapted to particular paleoenvironmental niches and have a particular stratigraphic range. This makes 

many microfossils encountered, once recovered from well samples, useful for correlation, age 

interpretation, and interpretation of depositional setting of any given interval in a well. The value of 

fossils for correlation has been known for over 200 years and routinely applied to well samples for 

around 100 years (Jones, 2011).  

 

Biostratigraphic data is typically gathered quantitatively or at least semi-quantitatively for each 

sample in a well. Thus, every species of a particular fossil group that is found is recorded in each 

sample either in absolute numbers or relative abundance. Data can be recorded in simple spreadsheets 

but is more easily interpreted when depicted using industry standard software. With the data displayed 

as a distribution chart (species on the x axis, depth on the y axis) (Figure 1), a biostratigrapher can 
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interpret the data. This usually involves the recognition of key marker species (either first or last 

downhole occurrences, or intervals with relative high abundance) or assemblages of species that are 

thought to have particular stratigraphic and/or paleoenvironmental value. The recognition of such 

events or intervals can be fairly straightforward in extensively studied stratigraphy with good fossil 

recovery and where the marker species are well known. It can be more challenging in frontier basins 

where endemic taxa occur and the order of stratigraphic events is uncertain.  Reworking of older 

microfossils into younger strata, or caving (the downhole collapse of sidewall material from higher in 

the well) can, in all cases, complicate the picture.  

 

 
Figure 1: A typical example of biostratigraphic data from a well or outcrop section. Here, absolute 

numbers of individual species are recorded for each sample in the form of histograms. Data can be 

much more extensive than this example – wells can contain tens to hundreds of samples and hundreds 

of species.  

 

Machine Learning 

 

Machine learning is a field of research within computer science which looks to develop computer 

algorithms that “learn” from data rather than being specifically programmed. As such, machine 

learning algorithms have the capability to progressively improve the performance on a specific task 

when exposed to larger volumes of data. It can use supervised or unsupervised approaches. In 

supervised approaches, machine learning algorithms build a statistical model of labelled sample data, 

known as training data, to make predictions or decisions without being explicitly programmed to 

perform the task. Within the training dataset, an interpretation already exists in the form of labels 

(also known as classes). Machine learning algorithms then seek to identify the basis for the 

interpretation of each class and apply that model to uninterpreted data. In unsupervised application, 

machine learning algorithms study all the data without preconceptions to identify potential clusters 

and patterns; this can be extremely powerful for identifying patterns in multi-dimensional datasets 

where human interpreters are unable to visualize such complex problems. 

 

An ideal dataset for a machine learning project should be clean (i.e. of a standard format and with 

minimal spurious data) and extensive such that the “signal” being extracted is visible over the noise. 

Biostratigraphic data is often suitable although care needs to be taken to avoid taxonomic 

complexities (e.g. the same species known by two different names) and extensive reworking or 

caving.  

 

 

 

 

https://en.wikipedia.org/wiki/Training_data
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Case Study 

 

The focus for this case study was biostratigraphic data from three wells from anonymous equatorial 

locations. Two wells form training data; with a third well the target for machine learning-based 

interpretation. Numerous samples had been analysed from each well and rich and diverse assemblages 

of foraminifera and calcareous nannofossils were present over an interval that ranged in age from 

Cretaceous to Neogene incorporating 60 biozones. In total, the three wells contained 768 species 

within 710 samples. However, in order to capture a full range of possible bioevents, the industry wells 

were supplemented with data from published sources (e.g. International Ocean Drilling Programme 

(IODP) reports on 16 wells with relevant stratigraphy) to form a more comprehensive training dataset. 

 

The data was provided without interpretation, thus an initial task was to carry out a human 

interpretation of biozone/age and palaeoenvironment which would then act as the “labelling” 

component of the training data. This then provided the context to develop the training dataset and a 

target to measure the success of the machine learning technique.  

 

To facilitate both human and machine learning based interpretation, it was useful to identify and 

eliminate spurious data, for example, that resulting from reworking or caving. Such data was 

identified by reference to species dictionaries that identify the broad stratigraphic range of species and 

through statistical screening.  

 

The project attempted to use machine learning to interpret both biozone/age and palaeoenvironment. 

For biozone/age interpretation, a Random Forest algorithm was initially used to predict the biozone 

probability of individual samples. Randomly dividing samples into training and test data lead to a 

model with an 80-90% classification accuracy (f1 score). However, when applied to a whole well, the 

accuracy was no more than 60%, partly a function of treating all occurrences with equal weight and 

partly a function of the limited training dataset. With this in mind, a Naïve Bayes approach was used 

to detect biozone presence. This calculated the ‘likelihood’ that a particular species belongs to a 

biozone using the training data. This was then used to predict the ‘maximum likelihood’ of biozones 

in the test well, paying particular attention to the top of a biozone, in the same way as a practicing 

biostratigrapher would. This led to much greater prediction accuracy. Importantly, the techniques 

highlighted the uncertainty in the assignment of a sample to a biozone in terms of a measurement of 

probability.  

 

Palaeoenvironmental interpretation was expressed as a paleowater-depth curve for the test well. 

Machine learning outcomes using training data in a similar manner to biozone/age interpretation 

compared well with human interpretation (Figure 2). Both raw data and feature engineering were 

used.  Feature engineering places fossil occurrences within groups related to their known broad 

palaeoenvironmental distributions (as a human biostratigrapher would). Interestingly, the outcomes 

between the two approaches were very similar. 
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Figure 2: Palaeoenvironmental (paleo-water depth) interpretation of a test well, comparing human 

interpretation with machine learning outcomes. Shaded areas highlight uncertainty.  

 

A key element in the success of this approach was the integration of subject matter expertise with 

statistical and coding skills. Biostratigraphers worked alongside those executing machine learning to 

ensure the results were meaningful. Palaeontological and biostratigraphic expertise proved vital to 

capture the nuances of interpretation and to ensure meaningful results.  

 

Conclusions 

 

A trial study has shown that machine learning techniques can be applied to biostratigraphic data in 

order to facilitate rapid, reasonably accurate interpretations of age/biozone and palaeoenvironment 

(paleo-water depth). Limitations were imposed by the restricted size of the training dataset, but 

nonetheless, the technique shows promise and merits further investigation. Learnings from the 

approach can be applied to other, non-biostratigraphic, geological data.  
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